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In this paper an application of a minimum principle proposed for electronic systems by Hall, 
Hyslop and Rees, [1] and [2], is considered. It is shown that the evaluation of the required two-centre 
molecular integrals involving one-electron Green's functions may be facilitated by the introduction of a 
particular class of trial functions. These functions incorporate the potential energy of the system as a 
weighting factor and Slater-type orbitals are then used as a basis set. The evaluation of the resulting 
integrals is discussed and illustrative calculations for the H~ ion are presented. 
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1. Introduction 

The variational functional 

rl = (coY, GVco)/(o9, Vo9) (1) 

has been considered by Hall and his co-workers, [1] and [2], as an alternative to 
the normal minimum energy variational principle for atoms and molecules. The 
functional arises f rom the conjugate eigenvalue equation, [1], with G being the 
Green 's  operator  defined by 

a = ( 2E- 73-1 (2) 

in which E is the energy of the system, T is the electronic kinetic energy operator, 
and/~ is a scaling factor. In Eq.(1), V is the potential energy operator, and re(r) is 
an arbitrary trial function. 

Details of  the scaling techniques used in implementing (1) and also an alter- 
native functional for molecular systems are given in [1] and [2], where applications 
to the hydrogen atom, and the hydrogen molecular ion H~ have been investigated. 
It was shown that the method has the advantage of allowing a wider class of  trial 
functions than is possible for the usual minimum energy principle, and also that 
the energies obtained are always at least as good as those of  the Rayleigh-Ritz 
prescription. The compensating disadvantage is, of  course, the increased difficulty 
of  the integrals involved in (1), due to the presence of the Green's  operator G. 

Attention has been given by Hyslop [-3] and by Blakemore, Evans and Hyslop 
[-4] to the evaluation of two-centre molecular integrals involving one-electron 
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Green's functions. For a certain class of trial functions, techniques have been 
developed which reduce the order of the numerical integrations by using Fourier 
transform representations. The resulting triple integrals are then evaluated numeri- 
cally using improved polar grids for increased efficiency. 

In the present paper, a different class of trial functions, which are applicable 
to two-centre molecular orbital calculations, is considered. The analytical evalua- 
tion of the integrals required is treated in some detail, with generalization in mind, 
and the methods are applied to the hydrogen molecular ion by way of illustration. 

2. Separated Atom Trial Functions 

In the earlier work [2], [-3] and [4] on two-centre integrals, trial functions of 
the form 

co(r) =f(2) (3) 

are considered, where 

,~ = (to + rb)/R (4) 

r a and r b being the distance between the electron and nuclei A and B, whose 
separation is R. In particular the simple united atom approximation 

w = exp( -  c2) (5) 

was utilized. Such trial functions are, of course, exact in the united atom limit as 
R ---> 0, but give the wrong energies in the separated atom limit as R -* ~ .  On the 
other hand, separated atom trial functions of the type discussed by Dalgarno and 
Poots [5] may well be correct in both limits provided variational parameters such 
as c in Eq.(5) are incorporated. Such trial functions are written in the form 

w(r) = w.(r.)  + Wb(rb) (6) 

in which the atomic orbitals w~ and co b are centred on nuclei A and B respectively. 
The functional (1) may be expressed as 

where 

and 

r 1 = I / J  (7) 

I =  Ga, + Gab + Gb. + Gbb 

J= voo+ rob+ vbo+ Vbb 

with the matrix elements being defined, for example, by 

G~b = (co. V, G Vcob) 

and 

Vob = (co., Vcob) 

(8) 

(9) 

(lo) 

(11) 
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Note that in the case of homonuclear molecules such as H~-, symmetry rela- 
tions such as Gaa = Gbb and Gba = Ga*b may often be utilised. 

It was found that, with this form of trial function, not all of the integrals arising 
could be reduced analytically to acceptable levels for evaluation. In particular 
integrals of the "exchange" type 

(war b 1, GWbr ~ 1) (12) 

presented difficulty. 
For  this reason, a modification is suggested in which the trial function co(r) is 

written 
V(r)w(r) = ~ . ( r a )  + ~b(rb) (13) 

The integrals (10)and (11) now become 

Gab = (~a, G~b) (14) 

Vab= (~b a, V- l~b) (15) 

Trial functions of this form have also been suggested by Schwartz [6] for use in the 
Schwinger variational principle for scattering problems. 

As a simple example, for H~, where 

V(r)  = - r 21  _ r ;  1 (16) 

the trial function defined by 

V w  = - r~ 1 exp( -  cra) - r b 1 exp( - crb) (17) 

could be utilized in a ground state calculation. 
It is easily seen that the function is of the correct form as R ---, 0 and as R ~ ~ ,  

and also attains the correct hydrogenic form in the vicinity of nucleus A as r a - ,  0 
and of B as rb -~ 0. 

More generally, the trial functions used are based on Slater-type orbitals, as 
in the review paper on the evaluation of molecular integrals by Harris and 
Michels [-7]. 

Thus in Eq.(13), 4 ,  and ~b are expressed as linear combinations of the basis 
set of functions centred on A and B respectively and defined by 

(Oa(n, l, m ,  c)=r"~ - z exp(-cra) Yz, m(Oa, C~) (18) 

~bb(n, l, m, c)=r~ -2 e x p ( - - c r b )  Yl,m(Ob, (~) (19) 

with 
n>~l ,  O < ~ l < ~ n - 1  and Iml<<.l (20) 

r a r b 

A R B 

Fig. 1. Polar coordinates 
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The coordinates used are shown in Fig. 1, q5 being the azimuthal angle about the 
axis ) -B= R. The spherical harmonics in Eq. (18) are as defined by Rose [8], and it 
should be noted that the definition is at variance with that of Harris and Michels 
(see Appendix). 

The functions defined by (18) and (19) are symmetrical with respect to inter- 
change of the nuclei A and B. However, in order to ensure that right-handed 
reference frames are used at both centres, it is preferable, in some cases, to work in 
terms of the complementary angle 0; shown in Fig, 1. 

The orbital q5 b is then defined by 

d?b = ( --  1)l+ mr, ~ - 2 exp( - crb) Yz, ,.(0~,, qS) (19a) 

3. Evaluat ion of  the Integrals  

The matrix elements G,~, Gab, Voa and Vab may be expressed as linear combina- 
tions of integrals defined by 

g ,a (n l ,  n2) = (~Dal, GqS,2) 

gab(n1, n2, R ) =  (~) al, G(gb2) (21) 
Vaa(nl, n2, R ) = ( ( g a l ,  V-14)a2) 

v .b(n l ,  n2, R ) = ( ~ I ,  V-iqSb2) 

In these formulae, the quantum numbers n, I, and m together with the exponent 
c, which is related to the effective nuclear charge, have been abbreviated according 
to 

n = (n, l, m, e) (22) 

and additional abbreviations, such as ~bai, have been used in Eq.(21) to denote 

4)ai = (a,(ni) = (a,(ni,  li, mi ,  c,) i=  1, 2 (23) 

3 . t .  T h e  I n t e g r a l s  Vaa a n d  l)ab 

In the case where Z a and Z b are the respective nuclear charges, the potential 
energy appearing in Eq.(21) is written as 

V(r) = - Z J r a  - Z J r b  (24) 

The corresponding integrals are best evaluated using the two-centre elliptic co- 
ordinates (2,/~, 40 defined by 

2 = (r a -1- rb) /R  , ]2 = (r a -- r b ) / J  (25) 

On using definition (A1) in Eqs.(18) and (19) it is at once apparent that the inte- 
gration over the azimuthal angle ~b yields the selection rule m I = m2 in both cases 
and it is easily demonstrated that v.. and V.b may be written in the forms 

v,a = - n ( R / 2 )  "~ +"26 . . . . .  Nl l ,  mlNl2, m2 

x d2 ~ A -~ e x p [ -  c~(2 + #)] (2 + p)"' +"2 - 2(2_ ~)2 
1 -1  

× P~(cos 0o)e~(cos 0o) d~ (26) 
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and 
v~b = - r~(R/2) "*+"26 . . . . .  Nh,,.,N~ . . . .  

+I* ' 
x j d2 A-  exp[-(c~2+fl#)]  ( 2 + # ) " ' ( 2 - # )  "2 

1 - 1  

x P~' (cos O,)P,~ 2 (cos 0b) d# (27) 

In these results, the normalization factors are given by Eq.(A2) and c~, fl and A are 
defined by 

c~ = l R ( c l  + c2) 

fl  = 1 R ( C l  - -  c2 )  ( 2 8 )  

A + Zo)  + ½(Z,, - 

and 

On noting that 

cos 0. = (1 +).u)/(,~ + u) (29) 

cos 0 b = (1 - 2#)/(2 - #) (30) 

and utilising definition (A3) for the associated Legendre functions, it is easy to 
verify that, apart from the A - 1 and exponential factors, the integrands in (26) and 
(27) are polynomials in 2 and # for all values of the quantum numbers. In fact, the 
integrals may be expressed in the general forms 

+1 
(/2 ~ A -1 e x p ( - a 2 - ~ # ) R . , + , 2  (2, #) d# (31) 

1 - 1  

and 

+1 

d2 I A-1 exp(-c~2-fl#)S,1 +,2 (2, #) d# (32) 
1 - 1  

where R,(2, #) and S.(2, #) are polynomials in which the highest powers of 2 and 
appearing are 2" and/~". 

General analytical expressions could be written down for R, and S. by ex- 
pansion. However, it was found to be more expedient to program a computer to 
perform the required algebraic manipulations directly. The coefficients for the 
Legendre functions and the binomial expansions are both generated by means of 
simple recurrence relations. This technique has been frequently adopted in similar 
instances by Harris and Michels [7]. 

It is apparent, therefore, that the basic integral required is of the form 

Ip, q= of d2 A-12Pt~q exp( -e2- f l /~ )  d# (33) 
1 - 1  

with 0~<p, q<~(n 1 +n2) (34) 
In the important homonuclear case where the nuclear Charge is Z =  Za = Zb, 

A reduces to Z2, and consequently 

Ip, q = Z -  lAp_ l(00Bq(fl) (35) 



148 M. B lakemore  et al. 

where the standard molecular integrals A v and Bq are defined by Harris and 
Michels as 

Ap(c O -  Z v exp(-~2) d2 
1 

(36) 
+1 

Bq(/?) = ~ #q exp(-/310 d# 
- 1  

For heteronuclear systems [v,q is obtained by differentiation of the basic result 
for Io, o defined by 

- 1 +1 
Io, o = 2 ( Z o + Z b )  ~ d2 (2+7#) -1 e x p ( - e 2 - ~ # )  d# (37) 

1 - 1  

with 

: ( z ~  - z ° ) / ( z ~  + zo )  (38) 

It is easily shown that 

Io, o = 2 R -  1 ( c 2 Z  b - -  c 1 Z a ) -  1 

× {exp(~7 --/~) EI(~ + ~7) - exp(/~ - ~7) EI(~ - ~7) 

- exp(fl7 - - 1  _ _  ~) [Ei( - fl - fl/7) - Ei(fi - fl/7)] } (39) 

the exponential integrals E l ( z  ) and Ei(z) being defined by Abramowitz and 
Stegun [10]. 

An alternative approach which has proved convenient in practice is to use the 
expansion 

Ip, q = 2(Z,~ + Zb)-I L (-- ~)~Ap- 1 -s(~)Bq+s(, 8) (40) 
s = O  

Convergence may be speeded up in certain cases by using Euler's transformation 
or the non-linear transformations of Shanks [11]. 

3.2. The Integral  ga~ 

Taking the origin at nucleus A and introducing the one-electron Green's 
function 

g(r l ,  r2) = - (272r12) - 1 exp( - kr  12) (41) 

corresponding to (2), with r12 = Iv 1 -r21 and # 2 E =  - ½ k  2, g,a may be expressed as 

ga,(nl ,  n2)= -S~ fa ( ra )Y~ ,ml (01 ,  ~bl)(2~zr12) -1 exp(-kr12) 

x f z ( r z )Yz  . . . .  (02, q~2) dr1 drz (42) 

the radial functions appearing in (18) having been abbreviated to 

f i(r) = r "i-  2 exp( - c,r) (i = 1, 2) (43) 
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Integrals of a similar type have been evaluated by Calais and L6wdin [12], and 
their method is followed here. Thus, the polar axis of the r 2 coordinates is taken 
along rl, and the new polar angles for r2 are 012 and 4h2, where 012 is the angle 
between rl and r2, and q512 is the azimuth about the axis rl. This corresponds to a 
rotation of the old system of co-ordinates through the Euler angles ~ =q~l,/7 = 01 
and 7 = 0. The function 

Y12,m2(02, ~2) 

is therefore transformed to 

[D~=,m,(q~l, 01, 0)]* Y~2,m,(012, gb12) (44) 
m '  

where the elements of the rotation matrix D are as defined by Rose [81. Integration 
over ~b12 shows that m'= 0 is the only non-vanishing contribution. Hence, noting 
that 

D~m, o(~,/7, 0)= (4rc)1/2(2/+ 1)-1/2 y~.,,,(fl, o:) (45) 

and completing the angular integrations using the orthonormality properties of 
the spherical harmonics, it follows that 

gaa= --~1,,,~ ~$ . . . . .  7 r l f ( r , )  dr1 7 r2f(r2) dr2 
0 0 

with 

r l  + r2  

x ~ exp(--r12) Pl2(cos 012) dr12 (46) 

COS 012 = ( r2 ~- r~ -- r~ 2)/(2r1 r2) (47) 

The radial integrations are now possible analytically and may be expressed in 
terms of the integrals denoted by 

[klm] = 7 ~ exp(-ar l )  drl ~ rl2 exp(-br2) dr2 
0 0 

r I + r 2 

x ~ rT2 exp(-crx2) dr12 (48) 
It1 -rzl 

an analytic form for this integral being presented by Calais and LOwdin. For 
reference purposes, the result is quoted in a rather more symmetric form as 

[klmfl = 2k if!m! 
" l - q + p  m - r +  

p=O q=O 
x [(a+b)t-q+P+X(b+c)"-"+q+l(a+c)k-v+"+x] -1 (49) 

Once again, the algebraic manipulations required to reduce (46) to the form (48) 
are best performed on the computer using simple recursion relations for the 
coefficients. 
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3.3. The Integral g,b 

The basic method employed here is based on the convolution approach sum- 
marized by Harris and Michels [7], and subsequently adopted by Blakemore, 
Evans and Hyslop [4] for united atom Green's function integrals. Thus, on using 
a Fourier transform representation of the Green's Function g(r~, r2), the integral 
may be written as 

gab(n1, n2, R)  = - -  (47r 3 ) -  1 S ~ffI($)($2 -}- k2) - 1~b2($) d,$ (50) 

where 

and 

~al(s) = S q~,l (r) exp( -  is. r) dr (51) 

with 

~<½(.-t+ 1) 

has been obtained by Geller [13]. Alternatively, recurrence relations for the 
generation of (n, l, c) r are given by Harris and Michels. 

In a similar manner, using the right-handed co-ordinate system (19a) in the 
definition of qbb2 , it may be shown that 

~bb2 = 4~r( - 1) 12 + m2( _ i)z~ exp( -  lb. s) Yz . . . .  (OS, ff)s)F2(s) (59) 

~b2(s) = S q~b2(r) exp( -  is. r) dr (52) 

The Fourier transform ~ba~ may be expressed as 

-~al = exp ( -  ia. s) ~ f l  (ra) Yz . . . .  (0 a, ~) exp( - is. r~) dr o (53) 

The vector A P  is denoted by to, a is the position vector of nucleus A relative to 
some arbitrary origin, and 00 and q5 are the polar co-ordinates of the electron P as 
shown in Fig. 1. The polar axis is taken along the vector s, whose polar co-ordinates 
relative to the axis A/~ are (0s, q~s), and an angular transformation similar to Eq.(44) 
is adopted, using Euler angles ~ = qSs, fl = 0 s and y = 0. It is easily verified that 

0al = 4~( - i) l~ exp( - ia. s) Yll,,,l(Os, ~b~)Fx(s) (54) 

where 

Fl(s )=(n  1 - 2 ,  ll, q ) r  (55) 

(n, l, c) r being Geller's notation [13] for the integral 

(n, t, c )r= ~ r"+ 2jz(sr ) exp(-cr )  dr (56) 
0 

in which j~(z) is the spherical Bessel function [10]. A similar result to Eq.(54) is 
quoted by Harris and Michels. The expression 

(n, l, c) T = 2Zl!(n- l+ 1)!c"-l+ l j (s2 + C 2 ) - n - 2  

x ~ ( - 1 ) ~ 2 a + 2 l + 1  s2"c -z~ ~=o (57) 
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where 

F 2 ( s )  = (n2 - 2, l 2, c2) r (60) 

The integral gab may now be written as 

gab = - 4 n -  1 (_  1)tz+m2ih-t2 

× ~ e x p ( - i R . s )  Y~,,,,, (0 s, ~bs)Fl(S ) 

× (s 2 +k2)  - 1 Yt2, m2(O~, ¢~)F2(s) ds (61) 

which represents a generalization of Harris and Michels' result for Coulomb-type 
integrals. 

As in Calais and L6wdin's work, the product of the spherical harmonics is 
replaced by the Clebsch-Gordon series according to 

Y~*, ml(O~, ~ )  Y~2, ,,,~(0~, c~) = ~, a t Yt, m(Os, ~s) (62) 
l 

where the coefficients a t are given by 

at = ( -  1)"1[(2/1 + 1)(2/2 + 1)(4re)-1(2l+ 1)-1] 1/2 

× C(ll, 12, l ; - m l ,  m2, m)C(l  1, 12, l; 0, 0, 0) (63) 

with ]l I - 12] <~ l ~< l 1 + l 2 and m = - m 1 + m2, Rose's notation [8] being employed 
for the Clebsch-Gordon coefficients C. Alternatively at may be written in the form 

at = ( - 1)"ff(2/1 + 1)(2/2 + 1)(2/+ 1)/(472)] 1/2 

(11 12 l "]{l 1 l 2 ; )  (64) 
x - m l  m2 - m ] \ O  0 

where the Wigner 3j-symbols are defined by Edmonds [9], many useful recurrence 
relations and formulae for their computation being quoted there. Harris and 
Michels give an alternative expression replacing Eq.(62), which is consistent with 
the form of atomic orbital which they use. 

The angular integrations are now straightforward, and, noting that the 
azimuthal integral produces the selection rule m = 0 or m 1 = m2, the final result is 

g a b =  - -  8 n -  1 / 2 6  . . . .  2 ~, i t ' - l ~ - l ( -  1)22+m2(21+ 1)l/2at 
l 

x S sZjz(RS)Fl(S)Fz(s)(s 2 +k2)  - a d s  (65) 
0 

The integral appearing in Eq.(65) is again a generalization of the result of Harris 
and Michels. Analytical treatment of these integrals based on a recurrence relation 
approach is possible. However, the relations are cumbersome, and have to be 
modified, for example, when cl/c 2 approaches unity, due to the presence of re- 
movable singularities. These difficulties are typified by the expression for 
gab(l, O, O, c 1 ; 1, O, O, c2) which is 

gob = - 8~R- ~(c~ - c~)- '(Cl ~ - k~-) - 1(c~ - k 2)- 

x {(c~ - c~) exp( - kR)  + (c~ - k 2) exp( - cl R) - (c~ - k 2) exp( -  c2R)} (66) 
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For this reason, numerical evaluation of the integrals was adopted. On writing 
the spherical Bessel function in the form 

j l (z)  = uz(z) sin z + vl(z ) cos z (67) 

(see Abramowitz and Stegun [10], p. 437), the integrand may be split into two 
components, each with an oscillatory factor of 2rc/R. The method of Alaylioglu, 
Evans and Hyslop [14] was then used to evaluate these components. This consists 
of integrating over each half-cycle, thus converting the infinite integral into a 
summation. The convergence of the resulting series is then accelerated using the 
method of Shanks. 

For integration over each half-cycle, the choice of quadrature formula is very 
wide. In Ref. [14], a low order Gaussian prescription (Stroud and Secrest [151) 
was suggested incorporating sub-division of the interval. In practice, it was found 
that an improvement was obtained by using higher-order Gaussian formulae 
(maximum order 10). 

However the most significant reduction in the total number of function evalua- 
tions was produced by employing integration routines specifically designed for 
oscillatory integrands. Most efficient was a Gaussian prescription based on an 
oscillatory weight function, but very good results were also obtained by a more 
flexible method incorporating a Chebyshev fit for the non-oscillatory part of the 
integrand. In fact, values of the infinite integrals accurate to eight significant 
figures are obtainable over the complete range of R with a total of about 50 inte- 
gration points for each value of R. 

4. Applications to the Hf  Molecule 

In general, linear combinations of orbitals ~i are employed for the trial function 
~(r) according to 

N 

V(J) ~- 2 ~)i~i (68) 
i=1 

where, in the notation of Eqs. (18)-(23), 

(hi = O,i + 4)hi = c/),(n~, li, mi ,  ci) + d?b(ni, li, mi ,  ci) (69) 

Eq. (68) is generalized in the case of hetero-nuclear diatomic molecules by replacing 
7iq)i by 

7~iq~a(nl, li, m i ,  c,i) + ~biq)b(ni, li, ml ,  Cbl) (70) 

where 7a~, 7hi, Ca~, Cbl are, in general, treated as independent variational para- 
meters. The correct behaviour in all limits is still obtained if the condition 

Cai/Cbi = Z a / Z  b (71) 

is imposed, hence reducing the number of independent variational parameters. 
As in the previous work [ 1 ]-[4], it is convenient to work in terms of the scaled 

variables x where 

x = k r  (72) 
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so that trial functions of the form 

e)(kr) (73) 

are employed. This means that the Green's operator becomes 

a = ( - ½ -  T ) - I  (74) 

and has associated Green's function 

g ( X i ,  X2) = --  (2rCXxa)- 1 e x p ( -  X12 ) (75) 

where Xlz=lXl-x2], all distances being multiplied by the scaling factor k. In 
particular, the scaled internuclear separation is denoted by 

P=kR (76) 

Functional (1) may then be written as 

k = (co V, GVo))/(co, V~o) (77) 

and minimization of the energy E =  -½k z with respect to the parameters ~i pro- 
duces the secular equation 

IG,j-kV, I--0 (78) 

where the matrix elements are given by 

Gi~ = (~,, G~bj) = (~b,, + ~bb,[GlqS,j + q~b~) (79) 

v,j = v - 1 % )  = (q o, + v -   [q oj + q bj) (80) 

the integrals involved being of the forms specified in Eq.(21). 
The approximate energy E =  -lk2 is now obtained from (78) by selecting the 

largest root for the ground state. Further optimization over the non-linear para- 
meters c~ appearing in the orbitals ¢b~ is now carried out using the method of Powell 
[16] (N.A.G. routine E04CAF). 

By way of illustration, the following combinations of atomic orbitals were 
considered as trial wavefunctions, and approximate ground state energies com- 
puted in each case: 

(I) Vco= ~(1, 0, 0, c) 

(H) Vo)=71q~(1, 0, 0, c)+72¢b(2, 0, 0, c) 

(Ill) Vo)=7lO(1, 0, 0, c1)+72q~(2, 1, 0, c2) 

(IV) Vco=7~(1 ,  0, 0, cx)+),zCb(2, 0, 0 ,C0+73~(2 ,  1, 0, c2) (81) 

(V) Vco=~q~(1, 0, 0, c)+~2q~(2, 0, 0, c) 

+])3~(2, 1, 0, c)+74~(3,  0, 0, c) 

+75~b(3, 1, 0, c) q-T6~b(3 , 2, 0, c) 

The results obtained are presented in Table 1 where values of the electronic 
energy are shown at various scaled internuclear separations for the five trial 
functions. The exact energies were obtained by interpolation from the results of 
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Table 1. Electronic energies, - E = ½ k  2, at scaled internuclear distances, P = kR 

P (I) (H) (III) (IV) (V) Exact 

0.5 1.8907 1.8915 1.8924 1.8937 1.8937 1.8943 
1.0 1.6912 1.6976 1.7025 1.7079 1.7079 1.7086 
1,5 1,4896 1.5032 1.5129 1.5217 1.5219 1.5224 
2.0 1.3135 1.3303 1.3452 1.3553 1.3560 1.3564 
2.5 1.1684 1.1841 1,2032 1.2130 1.2144 1.2147 
3.0 1.0517 1.0642 1.0853 1.0937 1.0959 1.0961 
3.5 0.9587 0.9675 0.9886 0.9951 0.9979 0.9982 
5.0 0.7801 0,7819 0.7958 0.7975 0.8002 0.8004 
7.0 0.6725 0.6726 0.6771 0.6772 0.6781 0.6783 

10.0 0.6109 0.6109 0.6117 0.6117 0.6118 0.6118 

Table 2. Equilibrium values for H I  

(I) (H) (Ill) (IV) ( V) Exact 

R 0 2.080 2.002 2.018 1.985 1.998 ' 2.000 
W0 0.5683 0.5780 0.5942 0.6008 0.6024 0.6026 

Wind [17]. Also in Table 2 the equilibrium internuclear distances, Ro, are pre- 
sented together with the corresponding minimum total energies 

W0 =E(R0) + 1/Ro (82) 

These equilibrium values are obtained as in Ref. [2] by optimizing 

W(P) = - ½k2(P) + k(P) /P  (83) 
with respect to P. 

Trial functions (I) and (H) suffer from the defect that the V- 1 term gives rela- 
tively too little weight to the region between the nuclei, and both give somewhat 
disappointing energies, though the results given by (H) may be improved slightly 
by employing separately varying exponents. The defect may be remedied by 
introducing polarization terms with l=  1 as shown in (III)  and (IV), (see also 
Dalgarno and Poots [5]), where further flexibility is obtained by using inde- 
pendently varying exponents in the additional terms. 

However, if only one independent variational parameter is used in the expo- 
nents, the required two-dimensional optimization is reduced to a one-dimensional 
optimization. The resulting savings in computer time are most usefully employed 
by incorporating a larger basis set of atomic orbitals. This idea prompted the use 
of trial function (V), which, although requiring, in total, no more integral evalua- 
tions than (IV), gave much better energies. A further calculation was performed 
using the same basis set as in (V), except that the exponent of each atomic orbital 
was constrained according to 

ci/c ~ = ni/n j (84) 

as in the calculations of Nesbet and Watson [18] on atomic Helium. This attempts 
to localize the orbitals with larger principal quantum number, but no further 
improvement in the energies was obtained. 
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In fact, it appears in general that, for a given number of orbitals, the approxi- 
mate energy values are not particularly sensitive to the choice of the parameters c~. 
Hence, no great improvement is realized by independent variation of these para- 
meters, although a considerable increase in computational effort is required. The 
alternative procedure of extending the basis set to include extra orbitals appears 
to be preferable, and results in rapid improvement in the approximate energy 
levels. 

Appendix. Definition of the Spherical Harmonics Yl.,.(0, ~b) 

The definition adopted is the commonly accepted one presented by Edmonds [9] and by Rose [8], 
namely, 

Y~,,,(O, q~)=(-1)mNI, mP'~ (cos 0) exp(im~b) (A1) 

where the normalization constant is given by 

Nz, m = [(2• + 1)(l-- m) !] 1/2/[47r(l + m) [] 1/2 (A2) 

The associated Legendre functions are defined by 

PT'(x) = (1 - x2)"/2D ~ + I(x2 - 1 )t/(2tl [) (A3) 

with D = d / d x  and x =cos 0. 
It will be noted that these definitions are applicable for both positive and negative values of m and 

imply that 

P [  re(X) = ( -  1) m ~ PT'(x) (A4) 

and consequently produce the symmetry relation 

Y~,,,,(O, ¢ ) = ( -  1)"Yt, _~,(0, q~) (A5) 
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